848. The Infrared Spectra of Cobalt(III) Ethylenediamine Complexes. Part I. Vibrations of the Ethylenediamine Chelate Ring.

By M. E. BALDWIN.

The infrared absorption spectra of some ethylenediamine complexes of tervalent cobalt have been measured in the region 500-4000 cm.⁻¹. Assignment of the bands arising from vibrations of the amino-group has been made by observing the shifts resulting on deuteration. A study of the region 850-900 cm.⁻¹ provides a means for differentiation of *cis*- and *trans*-isomers of bisethylenediamine complexes.

In the solid state the vibrational modes of metal-chelate rings are affected by (i) the orientation of the chelate molecules around the metal atom, (ii) the spatial configurations of the individual chelate molecules, and the non-bonded interactions between them, and (iii) ionic interaction or hydrogen bonding between the anion and the cation in a salt.

The present work was undertaken in order to discover whether infrared spectra could be used to distinguish between *cis*- and *trans*-arrangements of the chelate rings about cobalt, and the extent to which non-bonded and ionic interactions could be detected. A large number of ethylenediamine complexes of tervalent cobalt has been studied in paraffin mulls in the solid state. The measured frequencies of the absorption bands of compounds of the types *cis*- and *trans*- $[Co(en)_2Cl_2]X$ and $[Co(en)_3]X_3$ are given in Tables 1, 2, and 3.

Table 1.	Frequencies (cm. ⁻¹) of compounds of the type cis- $[Co(en)_2Cl_2]X$,
	where $X = Cl$, Br, I, SCN, ClO_4 , $\frac{1}{2}S_2O_6$.

							··· ·	4 0			
C1	\mathbf{Br}	I	SCN	ClO4	S_2O_6	Cl	\mathbf{Br}	I	SCN	ClO4	S_2O_6
3460sh	3 472m			_		1163m	1160w	1164m	1143s	_	
3425s	3425s					1134s	1133s	1136w			
						1117s	1115s	1117s			
3274sh	3266m	3257m	3268m	33 00m		1111sh	1111sh	1111s	1109s		
3266m				$3266 \mathrm{sh}$		1098m	1086m	1099 sh	1096s		
3195s	3195s	3215s	3195s	3279s		1064 sh	1064 sh		1050 vs		
$3165 \mathrm{sh}$	3165sh			3215sh		1058s	1058vs	1058vs	$1018 \mathrm{sh}$		
3 096m	3 096m	3125m	311 5m	3125m		1010sh	1018sh				
						1005m	1005m	1005s			
			2058s			999sh	990 sh	999sh	998m		
									938w		
1634s	1626s	1658s			1600 vs				9 3 0w		
1587 sh	1582 sh	1563 sh	1585 sh	$1587 \mathrm{sh}$		900m	896m	891s	89 3 w	894m	899m
1565s	1565 sh	1558s	1558m	1570 vs	1572 vs	876m	871m	876m	879m	877m	893sh
1541 sh	1560s	$1538 \mathrm{sh}$	$1538 \mathrm{sh}$	1560 sh				863m			876m
	1546 sh					788s	775s	780vs	801m	782 sh	775s
						770s	761s	759s	746s	769vs	754w
1305m	1318m	1312m	1316sh				733 m	741w		757s	
			1302m			714m	722m	719s			
1299 sh	1297 sh	1290w					704m	699w	690m	690w	695w
1285m	1284m	1274 sh	1274m							620 vs	692m
1272 sh	1271 sh	1267m				549s	570sd	585sd	578s	585s	570 vs
1212s	1208m	1192m	1190w			443s		565sd	565s	571s	
1200s	1193m	1188m								565s	
		1176m	116 3 s							556s	
			* For	kev to ir	ntensities.	see footn	ote to T	able 3.			
				,	· · · · · · · · · · · · · · · · · · ·						

Assignment of the Absorption Bands of the Ethylenediamine Cobalt Ring System.—(a) Vibrations of the NH_2 group. The principal modes of vibration of the NH_2 group are symmetrical stretching, asymmetrical stretching, bending, wagging, twisting, and rocking. An assignment of the bands arising from these vibrations has been made by observing the shifts resulting on the deuteration of the following complex ions: $[Co(en)_3](SCN)_3$, trans- $[Co(en)_2Cl_2]Cl$, and trans- $[Co(en)_2Cl_2]SCN$ (cf. Tables 4 and 5).

Bands in the regions 3000-3300, 1550-1580, 1160-1120, 1015-995, and 800-740 cm.⁻¹ showed isotope shifts and may be assigned to the vibrations of the NH₂ group.

I ABI	LE 2. Free	uencies (cn	i . j of com_{f}	pounas of th	<i>ie type</i> tran	s-[Co(en) ₂ C	$l_2] \Lambda$,
	whe	re X = CI,	Br, I, SCN	, NCO, CIC	$0_4, \frac{1}{2}S_2O_6, N$	Ю ₃ .	
Cl	\mathbf{Br}	I	SCN	NCO	ClO_2	S_2O_6	NO ₃
							3505w
							3425sh
3274m	3268sh	3247 vs	3247m	33 28m	3289s	3311m	3279sh
3250s	3247s	3195sh	3226 s	3226s	3263s	$3257 \mathrm{sh}$	3257s
3165m	3 167s	317 0s	319 0m	3185w	3221s	3226s	$3226 \mathrm{sh}$
3125sh	3120sh	3115sh	312 0m	3115w	3185w	3145s	3175s
3077s	3 086s	3 096s			3115w		
			2046 vs	2137 vs			
1591s	1592s	1587s	1585 vs	1592s	1587s	1590 sh	1603vs
		$1582 \mathrm{sh}$		$1582 \mathrm{sh}$	$1572 \mathrm{sh}$	1567 vs	
1309m	1314s	1312m	1312s	1314m			
1290w	1289w	1285w	1279s	$1302 \mathrm{sh}$			
1271s	1271s	1269m		1285m			
1206s	1206 sh	1206m	1200w	1196m			
	1203s	$1190 \mathrm{sh}$	1156w				
			1147w				
1120 vs	1114vs	1110vs	1110vs	1111vs			
1100 vs	1101vs	1104 vs					
1053 vs	1053 vs	1053vs	1050 vs	1053 vs			
1004 vs	1006vs	1003s	1008s	1011w			
994vs	997vs	994s	993s	998m			
			934m				
			927m				
888m	889m	888m	892s	898m	888m	887m	888s
				889sh	881sh		824s
808s	806s	800s	789m	820m	789m	778vs	810vs
754m	723m	719m	754s	769 vw	743w	735w	727s
			706m	623 vs	720w	704w	
				616vs	620 vs		
587 vs	586 vs	585s	588vs	592 vs	585s	588sd	588vs

TIDED 9 FROMMENCIAS (cm -1) of combounds of the type trans-[Co(en) C]]X

TABLE 3. Frequencies $(cm.^{-1})$ of compounds of the type $[Co(en)_3]X_3$, where X = Cl, Br, I, SCN, ClO_4 .

						+			
C1	\mathbf{Br}	I	SCN	C104	Cl	\mathbf{Br}	I	SCN	ClO_4
3484 m	3503m	3509w			1159vs	1155 vs	1152 vs	1152 vs	
3425m	3413m	3436w			1125s	1121s	1117 sh	$1129 \mathrm{sh}$	
3215m	3205m	3175md	3215 sd	3284m	1114sh	1111sh	1109s		
$3165 \mathrm{sh}$	$3175 \mathrm{sh}$	3106md	$3177 \mathrm{sh}$	3205s	1058vs	1057 vs	1059vs	1054s	
3086m	3 089m		3077sd	$3165 \mathrm{sh}$			1052 vs	$1037 \mathrm{sh}$	
			2066 vs	3 086s	1005w	1018w	1020w	1005w	
			2033 vs			1004w	998w	945w	
1618m	1613m	1616m	1600 sh	1616m	895m	895m	888m	886m	892m
1600 sh	1582s	1580s	1582s	$1582 \mathrm{sh}$	879m	882m	877 sh	876m	881m
1585s	1563sh	1538 sh	1560 sh	1558s			868m		
	155 3 s	1511s	1538 sh		781s	783vs	793m	813 sh	803sh
1326s	1323s	1318s	1321w				775s	800s	788s
1302w	1 3 00w	1295s	1302w					785 sh	769 sh
1277m	1276m	1267w	1284m		714w	741w	735s	757s	752w
1252m	1250m	1239w	1247w		707w	704w	719 sh	745s	
1217 vw	1217w	1205m	1205w		617w		576s	547s	597 sd
1163vs	1163vs				575sd	582 sd	560 sd	520s	
				-					

* s = strong, m = medium, w = weak, sh = shoulder, v = very, d = diffuse.

In metal-amine complexes the four principal regions of absorption are ~ 3300 , ~ 1600 , ~1300, and ~800 cm.⁻¹. These have been assigned to the NH stretching mode,¹ the asymmetric deformation,² the symmetric deformation,² and the NH₃ rocking mode ^{2,3} respectively.

 Chatt, Duncanson, and Venanzi, J., 1955, 4461.
Mizushima, Nakagawa, and Quagliano, J. Chem. Phys., 1955, 23, 136.
Barrow, Kreuger, and Basolo, J. Nucl. Inorg. Chem., 1956, 2, 2340; Sheppard and Powell, J., 1956, 4495, 3108.

TABLE 4.	Frequencies (cm. ⁻¹) of the NH_2 and ND_2 vibrations in	n
	undeuterated and deuterated [Co(en) ₃]X ₃ .	

	X =	Cl		X =	SCN		X =	- Cl		X =	SCN
N-H	N-D	N-H/N-D	N-H	N-D	N-H/N-D	N-H	N-D	N-H/N-D	N-H	N-D	N-H/N-D
3215	2396	1.34	3175	2381	1.36	1159	962	1.21	1152	961	1.20
3086	2288	1.35	3077	2252	1.37	1125	947	1.19	1129	934	$1 \cdot 21$
1585	1181	1.34	1582	1166	1.36	1005	866	1.16	1015		
1555	1152	1.35	1538						1005	840	1.19
						781	660	1.19	800	666	1.19

TABLE 5. Frequencies $(cm.^{-1})$ of the NH_2 and ND_2 vibrations in undeuterated and deuterated trans-[Co(en)₂Cl₂]X.

	X =	Cl		$\mathbf{X} =$	SCN		X =	= C1		$\mathbf{X} =$	SCN
Ñ-Н	^ N–D	N-H/N-D	Ñ-Н	N-D	N-H/N-D	N-H	^	N-H/N-D	Ñ-Н	N–D	N-H/N-D
3250	2439	1.33	3247	2445	1.33	1120	961	1.17	1110	950	1.18
3165	2410	1.31	3190	2375	1.34	1110	935	1.18			
3077	2210	1.90	3120	2009	1.99	1004	847	1.19	1008	855	1.18
1591	1176	1.35	1585	1176	1.35	994	812	1.22	993	821	1.21
									798	671	1.19

In the ethylenediamine complexes measured, the main bands in the NH stretching region occur between 3300 and 3077 cm.⁻¹ The bands shift on deuteration to 2400-2200 cm.⁻¹.

The bands at about 1600 cm.⁻¹ may be assigned to the NH₂ bending vibration; on deuteration shifts occur to the region 1180-1150 cm.⁻¹, in good agreement with the predictions of Mizushima $et al.^2$ for ammine complexes.

The remaining three sets of bands show smaller isotope shifts and can be assigned to vibrations of the NH₂ group as a unit, viz., wagging, twisting, and rocking modes respectively.

(b) Other vibrations of the ethylenediamine-chelate ring. Quagliano and Mizushima⁴ indicated that the cobalt-ethylenediamine ring is in the gauche-configuration. The X-ray crystallographic data on the compounds trans-[Co(en)2Cl2]Cl,HCl,2H2O 5 and trisethylenediaminecobalt chloride⁶ support this conclusion. Since the infrared spectra of all the cobalt-ethylenediamine complexes measured show the same general band type, it seems reasonable to assume that all these chelate rings have the gauche-configuration. Sheppard and Powell⁷ suggested that this general band structure is typical of the gauche-configuration of all metal-ethylenediamine rings.

The bands which are unaffected by deuteration and may be assigned to vibrations of the CH₂ group, appear in the regions ~ 1460 , ~ 1300 , ~ 1050 , and ~ 900 cm⁻¹. By comparison with the assignments by Mizushima, Quagliano, and their co-workers⁸ for similar five-membered rings of the gauche-type, tentative assignments can be made for these bands. Those in the 1460, 1300, and 900 cm.⁻¹ regions may be assigned to the CH_2 bend, CH_2 wag, and the CH_2 rock respectively. The band at 1050 cm.⁻¹ (which is sharp and strong and appears in all the complexes measured) could be the result of the stretching vibration of either the C-N or the C-C bond.

Differences in the Spectra of cis- and trans-Ethylenediamine Complexes.-The differences in the spectra of the *cis*- and *trans*-complexes of the type $[Co(en)_2Cl_2]X$ in the 1600 cm.⁻¹

⁴ Quagliano and Mizushima, J. Amer. Chem. Soc., 1953, 75, 6084. ⁵ Nakahara, Saito, and Kuroya, Bull. Chem. Soc. Japan, 1956, 29, 428.

⁶ Nakatsu, Shiro, Saito, and Kuroya, Bull. Chem. Soc. Japan, 1957, 30, 158; Saito, Nakatsu, Shiro, and Kuroya, Acta Cryst., 1955, 25, 731.

 ⁷ Sheppard and Powell, J., 1959, 791.
⁸ Mizushima, Nakagawa, Ichishima, and Quagliano, J. Phys. Chem., 1955, 59, 293; Lane, Sen, and Ouagliano, J. Chem. Phys., 1954, 22, 1955.

region are in general agreement with those found by Merritt and Wiberly.⁹ In the transbisethylenediamine complexes single sharp bands occur in the range 1605-1575 cm.⁻¹, whereas in the *cis*- and trisethylenediamine complexes the band structures are more complex and occur over the wider range 1634-1527 cm.⁻¹. Merritt and Wiberly also reported differences between the spectra in the region of the NH₂ rocking frequencies. However, hydrogen bonding of the type N-H . . . X has been found to raise these frequencies in metal ammines,¹⁰ and the present work has shown that in a series of compounds of the type [Co(en)₂AB]X, the positions and shapes of the bands in this region depend, not only on the geometrical configuration, but also on the nature of the groups A, B, and X.

In this region the *trans*-bisethylenediamine complexes show two sharp bands in the ranges 820-780 cm.⁻¹. More complex band structures are found in the cis- and triscomplex ions. In general, salts of anions which are able to form hydrogen bonds show

FIG. 2. Infrared absorption spectra from 8 to 10μ of

higher frequencies and simpler spectra in this region. The spectra of cis- and trans- $[Co(en)_{2}Cl_{2}]Cl$ and $[Co(en)_{2}Cl_{2}]ClO_{4}$ are shown in Fig. 1.

There are other indications of hydrogen bonding in both the NH stretching and the NH bending regions. In the stretching region the main peaks for *cis*- and *trans*-bisethylenediamine complexes fall between 3289 and 3077 cm.-1, and the highest frequencies occur with the salts of less deformable anions, e.g., perchlorate and dithionate, the lowest being for chloride and bromide. The occurrence of three main bands in some complexes can be attributed to the simultaneous vibrations of hydrogen-bonded and free NH groups.¹¹

Chamberlain and Bailar¹² suggested that the region 1120-1150 cm.⁻¹ can be used to distinguish cis- and trans-bisethylenediamine isomers. Apart from the obvious disadvantage that this region cannot be used when complexes contain co-ordinated or ionic oxy-anions, the band structures have been found to depend on the anion. In the halide

⁹ Merritt and Wiberley, J. Phys. Chem., 1955, 59, 55.

¹⁰ Hill and Rosenberg, J. Chem. Phys., 1954, 22, 148; Fujita, Nakamoto, and Koboyashi, J. Amer. Chem. Soc., 1956, 78, 3295. ¹¹ Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen, London, 1958, p. 253.

¹² Chamberlain and Bailar, J. Amer. Chem. Soc., 1959, 81, 6412.

ion complexes the *trans*-compounds show two sharp peaks in the ranges 1120—1110 and 1104—1100 cm.⁻¹. The cyanate and thiocyanate, however, show only one band at 1110 cm.⁻¹. The *cis*-complexes containing halide ions show a group of four bands in this region while the thiocyanates show only two. Trisethylenediamine complexes with halide ions have two distinct bands, at 1163—1150 and 1125—1109 cm.⁻¹, while the thiocyanate shows one sharp band, at 1152 cm.⁻¹, and a shoulder at 1129 cm.⁻¹ (see Fig. 2). Until the effects of hydrogen bonding and ionic interactions on the NH vibrations are elucidated, they can be of little use in distinguishing between the isomers.

The most consistent variations between the spectra of *cis*- and *trans*-isomers have been found in the CH_2 rocking region, *i.e.*, 870—900 cm.⁻¹. Here complexes with a *cis*configuration show two bands, while those with a *trans*-structure show one. The positions of the bands in compounds of the type $[Co(en)_2AB]X$ are not dependent on any of the groups A, B, and X, although some splitting may occur in salts of large anions. A large number of salts has been studied in this region, and some of the results are given in Table 6. This region, therefore provides a convenient method for distinguishing between the *cis*-

				• •		-	
	Α	В	X	С	is	ť	rans
*	Cl	OH	Cl	892	874	893	
	Cl	NCS	SCN			885	
	Cl	NCS	$S_{2}H_{6}$			889	
	Cl	NCS	CĨO	893	877	_	
	NCS	NCS	Cl ·	891	879	886	
	NCS	NCS	NO_2	892	883	895	
†	N_3	N_{3}	ClO ₄	892	877	897	
*	NH_3	NŎ3	S_2O_6	899	881	887	894sh
*	NH ₃	NH ₃	CĪO			895	892 sh
*	NHa	OH_2	NO			888	
*	NH,	C1 -	ClO			888	
	NCŠ	OH	SCN			887	895 sh
*	NO ₂	\mathbf{Br}	NO ₃			892	
	NO_2	Cl	Cl	891	879		
	NO_2	Cl	SCN	891	878		
	NO ₂	Cl	NO ₂				
	NCŠ	NO_2	Cl -	891	880		
	NCS	NO_2	SCN	893	877		
	NCS	OH_{2}	S ₂ O ₆	893	877		
*	NCS	NO_2	NO ₂	892	879		
*	NH_{a}	OH_2	Br	892	881		
*	OH	OH,	S ₉ O ₈	900	885		

Table 6.	Frequencies	(cm. ⁻¹) of	absorption	bands in the	? region
870—9	00 cm. ⁻¹ of co	mpounds	of the type	[Co(en) ₂ AB]]X.

* The author thanks Dr. M. L. Tobe for samples of these compounds. † The author thanks Dr. P. J. Staples for samples of these compounds.

and *trans*-isomers of bisethylenediamine complexes. As two bands are also found in this region in the trisethylenediamine complexes (see Table 3), it seems likely that the splitting occurs when the two ethylenediamine chelate rings are near to each other in space.

Configuration of the Individual Chelate Rings.—It has been pointed out by Bailar and Corey ¹³ that an isolated metal-ethylenediamine ring in the gauche-form can adopt either of two configurations (k and k') which are energetically and geometrically equivalent, but are enantiomeric. A compound having more than one ethylenediamine ring, even for fixed positions of the donor nitrogen atoms, may then have rings with either the kor the k'-configuration. Although the energy of conversion is expected to be small, the compounds containing different ring forms will differ slightly in thermodynamic stability. By considering the non-bonded interactions of the donor nitrogen groups, Corey and Bailar estimated that for the trans-bisethylenediamine arrangement, the kk-form is more stable. However, X-ray data indicate that in the solid state the two rings are in mirror image forms (kk'-form). Fig. 3 shows that in the kk'-form, the hydrogen atoms attached

¹³ Bailar and Corey, J. Amer. Chem. Soc., 1959, 81, 2623.

to the donor nitrogen atoms, although giving greater hydrogen-hydrogen interactions, are in a favourable position for hydrogen bonding with the anion.

It appears possible that in the solid state the kk'-form of the *trans*-bisethylenediamine complex is stabilised by interaction with the anion. The compounds that show the greatest amount of hydrogen bonding as assessed from the NH₂ frequencies also give the simplest

spectra. Compounds that are not fixed by specific interaction should contain both the kk- and the kk'-form, thus producing a greater complexity of band structure because of the lower symmetry of the kk-form.

EXPERIMENTAL

Determination of Spectra.—The spectra were recorded on a Grubb–Parson G.S. 2A doublebeam spectrometer. Solid samples in Nujol (B.P. grade) mulls were examined between rock-salt plates.

Anion Analysis.—A known weight of the complex was passed through a column of Amberlite IR-120 resin in the acid form. The equivalent of acid in the effluent was titrated with standard borax, Bromophenol Blue being used as indicator.

Preparation of Compounds.—trans-Dichlorobisethylenediaminecobalt(III) salts. (a) Chloride. trans-[Co(en)₂Cl₂]Cl was prepared by Bailar's method ¹⁴ and recrystallised from warm water (Found: Cl⁻, 12·4. Calc. for C₄H₁₆N₄Cl₂CoCl: Cl⁻, 12·4%).

(b) Bromide. This was prepared by Jörgensen's method ¹⁵ (Found: Br⁻, 23.9. Calc. for $C_4H_{16}N_4Cl_2BrCo:$ Br⁻, 24.2%).

(c) Iodide. This was prepared by the same author's method (Found: I⁻, 34.0. Calc. for $C_4H_{16}N_4Cl_2ICo: I^-$, 33.7%).

(d) Thiocyanate. This was prepared by adding a solution of sodium thiocyanate to a solution of the chloride of the series [Found: SCN⁻, 18·3. Calc. for $C_4H_{16}N_4Cl_2Co(SCN)$: SCN⁻, 18·9%].

(e) Perchlorate. The dihydrate was prepared by adding a solution of sodium perchlorate to a solution of the chloride [Found: ClO_4^- , 28·1. Calc. for $C_4H_{20}N_4Cl_2O_2Co(ClO_4)$: ClO_4 , 28·2%].

(f) Cyanate. This salt was prepared by adding a solution of potassium cyanate to an icecold solution of the chloride (Found: C, 20.8; H, 5.8. $C_5H_{16}N_5Cl_2OCo$ requires C, 20.6; H, 5.6%). The *cis*-isomer was not isolated.

(g) Nitrate. The dihydrate was prepared by adding a solution of sodium nitrate to one of the chloride [Found: NO_3^- , 17.7. Calc. for $C_4H_{20}N_4Cl_2O_2Co(NO_3)$: NO_3^- , 17.9%].

(h) For the dithionate Jörgensen's method ¹⁵ was used [Found: $S_2O_6^{2^-}$, 24.3. Calc. for $(C_4H_{16}N_4Cl_2Co)_2S_2O_6$: $S_2O_6^{2^-}$, 24.3%].

cis-Dichlorobisethylenediaminecobalt(III) salts. (a) Chloride. cis-[Co(en)₂Cl₂]Cl,H₂O was prepared by Bailar's method ¹⁴ (Found: Cl⁻, 11.6. Calc. for C₄H₁₈N₄Cl₂OCo: Cl⁻, 11.7%).

¹⁴ Bailar, "Inorganic Syntheses," McGraw-Hill, New York, 1946, Vol. II, p. 223.

¹⁵ Jörgensen, J. prakt. Chem., 1890, **41**, 441, 453.

(b) Bromide. The monohydrate was prepared from a solution of the chloride by addition of hydrobromic acid (Found: Br^- , 23.0. Calc. for $C_4H_{18}N_4Cl_2OBrCo: Br^-$, 23.0%).

(c) Iodide. Werner's method 16 was used (Found: I⁻, 33.5. Calc. for $C_4H_{16}N_4Cl_2ICo\colon$ I⁻, 33.7%).

(d) Thiocyanate. This was prepared by addition of sodium thiocyanate to a solution of the chloride (Found: SCN⁻, 19·1. Calc. for $C_4H_{16}N_4Cl_2COSCN$: SCN⁻, 18·9%).

(e) Perchlorate. The dihydrate was prepared from the chloride by addition of aqueous sodium perchlorate (Found: ClO_4^- , 27.8. Calc. for $C_4H_{20}N_4Cl_2O_2CoClO_4$: ClO_4^- , 28.2%).

(f) Dithionate. This was prepared from the chloride by addition of aqueous sodium dithionate [Found: $S_2O_6^{2^-}$, 24.3. Calc. for $(C_4H_{16}N_4Cl_2Co)_2S_2O_6$: $S_2O_6^{2^-}$, 26.8%].

Trisethylenediaminecobalt(III) *salts.* (a) The chloride, $[Co(en)_3]Cl_3, 3H_2O$, was prepared by Work's method ¹⁷ (Found: Cl⁻, 27.2. Calc. for $C_6H_{30}N_6Cl_3O_3Co$: Cl⁻, 26.8%).

(b) Bromide. The trihydrate was prepared by addition of hydrobromic acid to the chloride (Found: Br⁻, 45·1. Calc. for $C_6H_{30}N_6Br_3O_3Co$: Br⁻, 45·0%).

(c) Iodide. The monohydrate was prepared from the bromide by the action of potassium iodide (Found: I^- , 59·4. Calc. for $C_6H_{26}N_6I_3OCo: I^-$, 59·8%).

(d) Thiocyanate. This was precipitated by addition of sodium thiocyanate to a solution of the chloride (Found: SCN⁻, 41.7. Calc. for $C_6H_{24}N_6COS_3C_3N_3$: SCN⁻, 42.1%).

(e) Perchlorate. This was prepared from the chloride by addition of aqueous sodium perchlorate (Found: ClO_4^- , 55·3. Calc. for $\text{C}_6\text{H}_{24}\text{N}_6\text{CoCl}_3\text{O}_{12}$: ClO_4^- , 55·7%).

Chloroisothiocyanatobisethylenediamine salts. (a) trans-Thiocyanate. This was prepared from trans- $[Co(en)_2Cl_2]Cl$ and potassium thiocyanate by Werner's method ¹⁶ (Found: SCN⁻, 17.0. Calc. for $C_5H_{16}N_5SClCoSCN$: SCN⁻, 17.6%).

(b) trans-Dithionate. This was prepared by Werner's method ¹⁶ [Found: $S_2O_6^{2-}$, 22·2. Calc. for $(C_5H_{16}N_5SClCo)_2S_2O_6$: $S_2O_6^{2-}$, 22·7%].

(c) cis-Chloride. Werner's method ¹⁶ was used (Found : Co, 19·35. Calc. for $C_5H_{16}N_5SCl_2Co$: Co, 19·2%).

(d) cis-Perchlorate. The monohydrate was prepared by the action of perchloric acid on the cis-chloride (Found: C, 15.45; H, 4.6. Calc. for $C_5H_{18}N_5SCl_2O_5Co$: C, 15.4; H, 4.6%).

Chloronitrobisethylenediamine salts. (a) cis-Chloride. cis-[Co(en)₂ClNO₂]Cl was prepared by the action of sodium nitrite on trans-[Co(en)₂Cl₂]Cl according to Werner ¹⁶ (Found: Cl⁻, 11.6. Calc. for C₄H₁₆N₅O₂ClCoCl: Cl⁻, 11.9%).

(b) cis-Thiocyanate. This was prepared by the action of aqueous potassium thiocyanate on the chloride (Found: SCN⁻, 18·4. Calc. for $C_4H_{16}N_5O_2ClCoSCN$: SCN⁻, 18·6%).

(c) cis-Nitrite. Werner and Gerb's method ¹⁸ was used (Found: C, 15.2; H, 5.1. Calc. for $C_4H_{16}N_7O_4ClCo: C, 15.65; H, 5.2\%$).

Nitroisothiocyanatobisethylenediamine salts. (a) cis-Chloride. Prepared by Werner's method ¹⁶ (Found: Cl⁻, 12·3. Calc. for $C_5H_{16}N_6SO_2CoCl$: Cl⁻, 12·3%).

(b) cis-Thiocyanate. This was prepared from the chloride by addition of aqueous potassium thiocyanate (Found: SCN⁻, 16.8. Calc. for $C_5H_{16}N_6SO_2COSCN$: SCN⁻, 17.1%).

Di-isothiocyanatobisethylenediamine salts. (a) cis-Chloride. The monohydrate was prepared by Werner's method ¹⁶ (Found: C, 21·2; H, 5·1. Calc. for $C_6H_{18}N_6S_2OCICo$: C, 20·7; H, 5·2%).

(b) cis-Nitrite. The monohydrate was obtained by addition of sodium nitrite to the chloride (Found: C, 20.5; H, 5.4. Calc. for $C_6H_{18}N_7S_2O_3Co$: C, 20.1; H, 5.1%).

(c) trans-Chloride. This was prepared as monohydrate by the action of hydrochloric acid on the thiocyanate (Found: C, 21.0; H, 5.7. Calc. for $C_6H_{18}N_6S_2OClCo:$ C, 20.7; H, 5.2%).

(d) trans-Nitrite. This was prepared by the action of sodium nitrite on the chloride (Found: C, $22\cdot4$; H, $4\cdot9$. Calc. for $C_6H_{16}N_7S_2O_2Co$: C, $21\cdot2$; H, $4\cdot9\%$).

trans-Isothiocyanatohydroxobisethylenediaminecobalt(III) thiocyanate. The monohydrate was prepared by Werner's method ¹⁶ (Found: C, 21.9; H, 6.3; Co, 17.7. Calc. for $C_6H_{19}N_6S_2O_2Co$: C, 21.9; H, 5.8; Co, 17.8%).

cis-Isothiocyanatoaquobisethylenediaminecobalt(III) dithionate. The trihydrate was prepared by passing cis-[Co(en)₂NCSCl]Cl through a column of Amberlite IR-400 resin in the hydroxide form and neutralising the effluent with dithionic acid, which had been prepared by passing

¹⁶ Werner, Annalen, 1912, **386**, 1.

¹⁸ Werner and Gerb, Ber., 1901, **34**, 1742.

¹⁷ Work, ref. 14, p. 221.

sodium dithionate through a column of Amberlite IR-120 resin in the acid form. The complex dithionate was precipitated by addition of alcohol (Found: Co, $12 \cdot 5$. Calc. for $C_4H_{24}N_4O_{10}S_2Co$: Co, $12 \cdot 5\%$).

Deuterated Compounds.—In alkaline solution, the hydrogen atoms attached to the donor nitrogen atoms, as with the ammino-complexes,¹⁹ undergo exchange with the solvent. Deuterated trisethylenediaminecobalt(III) chloride was prepared from the protonated complex. $[Co(en)_3]Cl_3$ was dissolved in 99.80% deuterium oxide made approximately M in hydroxide (~ 0.04 g. of sodium hydroxide in 1 ml. of deuterium oxide) and the mixture was stored at 40° for 30 min. The deuterated chloride was precipitated by addition of concentrated hydrochloric acid after the mixture had been cooled to 10°. The analysis fits a compound containing three molecules of deuterium oxide of crystallisation, *i.e.*, $[Co(ND_2 \cdot CH_2 \cdot ND_2)_3]Cl_3, 3D_2O$ (Found: C, 17.2; H + D, 10.0. $C_6H_{12}D_{18}N_6O_3CO$ requires C, 17.2; H + D, 10.5%).

The thiocyanate was prepared from the chloride by addition of aqueous sodium thiocyanate. The analysis indicates that the *compound* has one molecule of deuterium oxide of crystallisation, *i.e.*, $[Co(ND_2 \cdot CH_2 \cdot CH_2 \cdot ND_2)_3](SCN)_3, D_2O$. The protonated compound is anhydrous. Bands observed in the D-O stretching region in the infrared spectrum also show the presence of deuterium oxide (Found: C, 24.2; H + D, 9.1. $C_9H_{12}D_{14}N_9S_3OCo$ requires C, 24.3; H + D, 9.0%).

Deuterated *trans*-dichlorobisethylenediaminecobalt(III) salts were prepared from *trans*-[Co(en)₂Cl₂]Cl. The protonated chloride was dissolved in 99.80% D₂O (1M with respect to hydroxide), and the mixture left overnight. Excess of concentrated hydrochloric acid was added, and the mixture heated to dryness on a water-bath. The resulting green crystals were dried at 110°. A sample of the deuterated chloride was taken for infrared analysis. A solution of sodium thiocyanate was added to the rest, and the deuterated *thiocyanate* was precipitated (Found: SCN⁻, 17·3. C₅H₈D₈N₅SCl₂Co requires SCN⁻, 17·6%).

The author thanks Dr. J. Lewis for advice and discussion.

BEDFORD COLLEGE, REGENT'S PARK, LONDON, N.W.1.

[Received, April 5th, 1960.]

¹⁹ Anderson, Spoor, and Briscoe, J., 1943, 361; Brock and Gold, J., 1959, 966.